

2021 SCHOLARSHIP EXAMINATION

DEPARTMENT Computer Science

COURSE TITLE Year 13 Scholarship

TIME ALLOWED FIVE hours with a break for lunch at the discretion

of the supervisor

QUESTIONS There are TWO questions in the paper. Candidates are to

answer BOTH questions. Answer as much of each question

as you can. Note that Question 2 is significantly more

difficult than Question 1. Plan your time to allow a good

attempt at each.

INSTRUCTIONS Candidates may use any text or manual or online

programming language documentation for reference during

the examination. Candidates may not copy code from the

internet or consult anyone other than the examiners during

the examination

DETAILS Both questions pose problems which you are asked to solve

by writing computer programs. They may also ask for

written answers for some problem parts. In programming

you may work in the programming language of your choice.

However, the examiners need to be able to read your

program text and if at all possible, test run it. If problems

arise from your choice of programming language, we may

contact you after the examination, for clarification. Written

answers to parts of questions can be submitted in text files;

included as comments in your program text; or as

photographed or scanned images of hand written documents.

Remember also that partial marks may be awarded for

programming ideas written down, but not yet implemented.

CALCULATORS PERMITTED Yes

- 2 -

QUESTION 2 CONTINUES ON THE NEXT PAGE

1. Heartrate (Careful and Accurate Programming)

Your programming work in this question will be assessed on three criteria:

(a) Completeness and accuracy of the program. It may be that this problem statement does

not state exactly what the program should do under all circumstances. If you find a
situation of that nature, choose a solution and write down, either on paper or in the
comments of your program what the difficulty was and how you chose to resolve it.

(b) Good presentation. That is, it should make good use of programming language facilities,

be well organised, neatly laid out, and lightly commented.

(c) Careful checking. Wherever possible check input from the program user in case they

have made errors.

In this question you are asked to write a program that calculates your heartrate. Your

heartrate is calculated as ‘beats per minute’ (bpm). Bpm can be calculated by counting the
number of times your heart beats in 1 minute, or by taking the interval between two beats

(inter-beat interval) and extrapolating it out to the number of beats per minute. Your

program will do the latter.

For example, the picture above shows the electrical activity of the heart. There are four

peaks, which represent four heartbeats. The interval between each beat is called the inter-

beat interval. We can use the first inter-beat interval to calculate bpm as follows:
60,000/857 = 70 where 60,000 is one minute in milliseconds, 857 is the first inter-beat

interval, and 70 is the resulting bpm (rounded to the nearest whole number).

You can use one inter-beat interval at a time to calculate bpm. However, if the data is noisy,

this can result in some extreme differences. Instead, you should ‘smooth’ the bpm by using
more than one inter-beat interval at a time. You can do this by using: (1) the cumulative

mean, (2) a sliding window, or (3) a dynamic sliding window. The cumulative mean is simply

the mean of all inter-beat intervals up to and including the current one, i.e. [1], [1,2],
[1,2,3], [1,2,3,4], etc. A sliding window calculates the mean inter-beat interval from n

number of intervals, moving across by one each time, i.e. [1,2,3,4,5], [2,3,4,5,6], [3,4,5,6,7],

etc. A dynamic sliding window starts by calculating the cumulative mean until there are
enough elements to begin the sliding window, i.e. [1], [1,2], [1,2,3], [1,2,3,4], [1,2,3,4,5],

[2,3,4,5,6], [3,4,5,6,7], etc.

Your task is to write a program which interacts with a user allowing that user to enter a

series of inter-beat intervals. It should use these intervals to calculate the user’s heartrate,

as bpm rounded to the nearest whole number. Your program should calculate the bpm in
four different ways, as follows.

 Using individual inter-beat intervals (as shown in the example above)

 Using the cumulative mean of inter-beat intervals

 Using a sliding window of inter-beat intervals (with a window size of 5)

 Using a dynamic sliding window of inter-beat intervals (with a maximum size of 5)

- 3 -

QUESTION 2 CONTINUES ON THE NEXT PAGE

Finally, your program should also display the heartbeats visually (see sample output below),
both for bpm calculated using individual inter-beat intervals, and for bpm calculated using

the dynamic sliding window. For example, for the former, if the bpm is 71, you will display

70 dashes and one plus sign. For the latter, if the bpm is 75, you will display 74 dashes and

one asterisk.

 Display bpm calculated using individual inter-beat intervals

 Display bpm calculated using a dynamic sliding window

The transcript of a sample interaction with such a program is given below. In the

transcript, information entered by the user is shown in bold type. You don’t have to follow

this style of data entry or format results in the same way. The sample is just here to show

the kind of interaction expected of your program.

Heartrate Calculator

How many inter-beat intervals would you like to enter: 10

 Enter interval 1: 857

 Enter interval 2: 845

 Enter interval 3: 833

 Enter interval 4: 857

 Enter interval 5: 833

 Enter interval 6: 822

 Enter interval 7: 800

 Enter interval 8: 811

 Enter interval 9: 789

 Enter interval 10: 769

Calculating Results

 Would you like to calculate your heartrate using individual intervals (y/n): y

 70

 71

 72

 70

 72

 73

 75

 74

 76

 78

 Would you like to calculate your heartrate using the cumulative mean(y/n): y

 70

 71

 71

 71

 71

 71

 72

 72

 73

 73

 Would you like to calculate your heartrate using a sliding window(y/n): y

 -

 -

 -

 -

 71

 72

- 4 -

QUESTION 2 CONTINUES ON THE NEXT PAGE

 72

 73

 74

 75

 Would you like to calculate your heartrate using a dynamic sliding window(y/n): y

 70

 71

 71

 71

 71

 72

 72

 73

 74

 75

 Would you like to display your heartrate(y/n): y

 ---+

 --+

 ---+

 ---+

 ---+

 --+

 --+

 ---+

 ---+

 ---+

 Would you like to display your smoothed heartrate(y/n): y

 ---*

 --*

 --*

 --*

 --*

 ---*

 ---*

 --*

 ---*

 --*

- 5 -

QUESTION 2 CONTINUES ON THE NEXT PAGE

2. Images (Problem Solving and Programming)

 Your programming work in this question will be assessed on three criteria:

 (a) Your approach to the problem. We will be looking at your work for evidence that you

found good ways of storing the necessary data, and devised algorithms for finding and
displaying the requested results. Please hand in any notes and diagrams which

describe what you are attempting to program, even if you don’t have time to

code or complete it. You may include comments in your program, or write a

description of your program to hand in.

 (b) The extent to which your program works and correctly solves the problem.

 (c) The extent to which you use results from your programming to explore the problem
presented.

You may find that the programming language you use makes it difficult to produce output as

shown in the example implementation steps below. If this is the case, feel free to build your
program in a way that suits your circumstances.

Working with photographs or other images is a common activity on modern computers. In

particular, graphics capabilities enable us to view detailed images. Early computers didn’t

have graphics displays; they were only capable of displaying text. Text displays can be

used for (very) low resolution graphics, sometimes using the shapes of text characters as
part of the images. Here are two cat examples of ‘ASCII art’.

In this question, you are asked to write a program to display, explore and process image

data using only a text display. The question presents the problem in stages for you to

program. The stages include further explanation of the way in which the large amounts of

data in an image can be reduced for low resolution display, and of the operations required.

We suggest that you build your program in the order given. This will make it likely that
you have parts working at the end, even if you don’t have time to complete the whole

program. However, we also strongly suggest that you read through all the stages before

starting to program. Stage I is the final stage, in which you have the most freedom to

explore algorithm ideas.

The stages of this problem involve building and changing a program. Instructions will be

given in some detail for the first stages. Later stages require that you develop the code

yourself. When you are making a major change, you should save a working version of your

program. This will help us see what you have achieved, especially if you have difficulties

with the altered version. Where stages ask you to try different ways of displaying an image,

you can write different display procedures within the same program to make sure that all
of your answers are still visible to the examiner.

|\---/|
| o_o |
 ^/

. _,-'""`-._
(,-.`._,'(|\`-/|
 `-.-' \)-`(, o o)
 `- \`_`"'-

- 6 -

QUESTION 2 CONTINUES ON THE NEXT PAGE

Image Data Storage

An image is a grid of pixels, each with a colour. For example, consider the following

picture of an apple. It is made of 216 columns each of 217 rows of pixels (46872 in total).

From left to right, the images below magnify an area near the base of the stalk more and

more. In the right hand image especially it can be seen that the picture consists of small

square (pixels) of colour.

Computer displays generate colours by mixing various amounts of the three primary

colours: red; blue; and green. In an image therefore, each colour is stored as three

numbers, being the levels of each colour component. The colour levels are each stored as
values in the range 0 to 255 (so as to fit into one byte of memory). Some examples:

 A pure bright red pixel might be stored as red=255, blue=0, green=0; meaning full intensity

red, with zero for both blue and green.

 A pure bright yellow pixel might be stored as red=255, green=255, blue=0; meaning full

intensity for both red and green with no blue (red and green light combine to give yellow).

 Red=0, green=0, blue=0 gives a black pixel.

 Red=255, Green=255, Blue=255 is a white pixel.

 A mid pink (half way between red and white) might be red=255, green=128, and blue=128.

A wide variety of file formats are used for storing images on computers. You have probably
used .bmp, .png and .jpg formats at some time. For this question we have devised our own

image format. An image is stored in a text file. The first line has two numbers separated by

- 7 -

QUESTION 2 CONTINUES ON THE NEXT PAGE

a space. These numbers are the width and height of the image (in pixels). After that there
are lines for each pixel starting with the leftmost pixel on the first row, then the second pixel

along the row, and so forth to the end of the first row. The next line has the left most pixel

of the second row and so forth to the end of the image. The first few lines of the apple image

file are as follows, showing a width of 216 pixels and a height of 217 pixels. The six pixel

colours shown are all the same off-white colour from a corner of the image. There are 46,873
lines in the file.

216 217
243 239 236
243 239 236
243 239 236
243 239 236
243 239 236
243 239 236
. . .

We have supplied a number of sample images for you to use. In each case there is a .txt file

which has the data as described above, and a .bmp file so that you can look at the picture

using any image viewing software on your computer (usually a double click will open a photo

viewer or paint program). Please note that your program should read the .txt file. You are

not required to program reading of the .bmp file. The images supplied are

 Emoji A small image with bright colours

 Apple The image shown above

 Apple2 Another picture of apples and leaves

 Apple2At30pc A version of Apple2 scaled down to 30% of original size

 NZFlag The New Zealand flag

- 8 -

QUESTION 2 CONTINUES ON THE NEXT PAGE

Stage A: A Picture Frame.

Use the Emoji file for this stage. Look at the file to find out how many rows and columns

there are in the image. Write a program to draw a box using text characters. The box should

be the right size to hold the Emoji image. The result should be similar to the left part of the

figure below.

+------------------------------+
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+------------------------------+

+------------------------------+
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@ @@@@@@@@@@@@@@|
|@@@@@@@@@@ @@@@@@@@@@@|
|@@@@@@@@@ @@@@@@@@@|
|@@@@@@@@ @@@@@@@@|
|@@@@@@@ @@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@|
|@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@ @@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@ @@@@@@@@@@ @@@@@@@@@|
|@@@@@@@@ @@@@@@@@ @@@@@@@@|
|@@@@@@@@ @@@@@@@@@@ @@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
+------------------------------+

Stage B: Seeing Something.

Extend your program to read data from Emoji.txt. Our goal is to work towards displaying

enough from the image to make it somewhat recognisable. Of course the display resolution

is very low and there is no colour, so the best we can hope for is to see shapes. For this

first display experiment draw a ‘@’ character when the green intensity is greater than 128
(the middle of the range) and a space (blank) character otherwise. This gives a very rough

approximation to a black and white image. (As the human eye is most sensitive to green

light, the green level is not a bad approximation to the level of light or dark.) You should

get a result like that shown on the right above.

Stage C: The Right Way Up

The result of the last stage should be recognisable as having shapes from the Emoji image.

It is however upside down (because the rows are stored from bottom to top). Modify your

program to display the image the right way up.

Stage D: Scaling

The Emoji image displayed in stages C and D is tall and thin. The original image was close

to being square. The problem here is that the image expects square pixels and our ‘pixels’

(characters) are not square – they are taller than they are wide. We can’t easily change our

- 9 -

character display. Perhaps a different font and line spacing might work, but this project is
going to need a scaling system for dealing with large images any way. Find a way of
shrinking the image vertically. Hint: The following example simply leaves out every third
line of the image.

+------------------------------+
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@ @@@@@@@@@@ @@@@@@@@@|
|@@@@@@@@ @@@@@@@@@@ @@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@ @@@@@@@|
|@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@ @@@@@@@|
|@@@@@@@@ @@@@@@@@|
|@@@@@@@@@@ @@@@@@@@@@@|
|@@@@@@@@@@@@@@ @@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
+------------------------------+

Stage E: Colours

The Emoji image was drawn using the colours red, yellow, black and white. If we modify

the program to just show black parts the result might be as follows:

+------------------------------+
| |
| |
| |
| |
| |
| |
| @ @ |
| @ @ |
| |
| |
| |
| |
| |
| @@@@@@@@@ @ |
| @ |
| |
| |
| |
| |
+------------------------------+

Your task here is to produce four versions of your program to display just black (as above),
just red, just yellow and just white. Hint: A red pixel has a high red intensity, but so does a
white pixel. Red pixels have high red, but low green and blue.

- 10 -

Stage F: More Scaling

Scaling becomes more important when we deal with larger images. Starting with the Apple

image, produce a version of your program which can display the image in close to the

correct shape, but at a scale that fits on a screen for easy viewing. Try each of the other
images and choose appropriate scales for each.

Stage G: Colours Again

The colours used in the Emoji image were bright and clear. The colours in the Apple image
are more subtle. Write a version of your program (using scaling developed in Stage F)

which displays the mostly red areas of the apple.

Stage H: Different Colour

Adapt your program from Stage G to display the red areas from the second apple image

(you may use either version of the image).

Edge Detection

When we draw with pencil on paper we often draw outlines for objects. For example, the

basic shape of the apple and its shadow are captured in the sketch below (done by

manually tracing around the shapes in the image). In image processing, ‘tracing’ around
edges (which we call ‘edge detection’) is often used as a first stage when recognising objects

in a scene. The idea is to make a new image in which we introduce bits of line whenever

the colour or brightness in an image changes sharply between nearby pixels.

- 11 -

More specifically we generate an image in which we set a pixel to be part of a line if the
pixels near it differ in colour. We have choices to make in deciding exactly which pixels

and colours of pixels to compare, and finding a solution which works well on our low

resolution images is your task. The following is a simple algorithm which finds some

‘edges’, but not all. It decides what to display at each pixel position as follows:

 if the pixel position is on the left or right edge of the image

set the output to “ “

 else if the pixel to the left and the pixel to the right of the position being

 considered have green intensities that differ by more than 32

 set the output to “@”

 else
 set the output to “ “

The result looks like this:

+--+
| |
| @ @ |
| @ |
| @ @@@@ |
| @ @ @ |
| @ @ |
| @ @@ @ @ |
| @ @ @@@ |
| @ @ @ @ |
| @ @ @ |
| @ |
| @ @ |
| @@ @ @ |
| @ @ |
| @ @ @ @ @ |
| @ @ @ |
| @ @ @ @@ |
| @ @ |
| @ |
| @ @ |
| |
| @ |
| @ |
| @ |
| @ @ |
| @ |
| @ |
| @@ |
| |
| |
+--+

Note that we see edges corresponding to the sides of the apple. However, some choices

were made in writing the algorithm – we are only comparing pixels to the left and the right;

we are only looking at the green colour component; and we are looking for differences

greater than 32. Two effects are: we mostly see vertical lines because horizontal lines
would occur when the pixels above and below a given point differ. Detection of the

boundary between the apple and its shadow is poor.

Stage I: Edge Detection

Your task is to improve the edge detector, and try it on the images provided. Your answer
should include a written description of the method(s) that you try.

