THE UNIVERSITY OF

WAIKATO

2008 COMPUTER SCIENCE SHOLARSHIP EXAMINATION

TIME ALLOWED

NUMBER OF QUESTIONS

IN PAPER

NUMBER OF QUESTIONS
TO BE ANSWERED

GENERAL INSTRUCTIONS

SPECIAL INSTRUCTIONS

PRACTICAL SECTION

Six hours with a break for lunch at the discretion of the
supervisor

Three

Three

Candidates are to answer ALL THREE questions. All
questions are important. Answer as much of each
question as you can. Plan your time to allow a good
attempt at each question, but be aware that Question 3
is the most difficult and will take considerably longer
than the others.

Please hand in listings, notes and answers to written
questions, and a CD/floppy disk with your
program/computer work for each question. Please
make sure that copies of programs are stored as plain
text files. You cannot assume that the examiner has
available any special software that might be required to
read your files.

Candidates may use any texts or manuals for reference
during the examination

TURN OVER

Peak Oil (Spreadsheet Use)

In this question you are asked to use a spreadsheet to do calculations and to display the
results. We expect that the spreadsheet will be used for all calculations unless the
question states otherwise - you will be marked down for performing calculations by hand
and directly entering the results. Your work will be graded on three criteria.

(a) The accuracy of your results.
(b) The skill you show in making use of the capabilities of the spreadsheet.

(c) The presentation of your results. We have deliberately not provided any instructions
concerning layout or formatting

Studying oil production in the 1950’s M. King Hubbert discovered that the rate of
production of an oil field over time generally follows a bell shaped curve. Production
starts at a low level with the first well drilled; it increases at an accelerating rate as
more wells are added; then the rate of increase slows until ‘peak production’ is reached.
After that production drops, following a curve that is the mirror of the earlier growth.
An equation for the bell curve is

Pe M{t—;ej}z ;fgz

Where t is time (in years), P is the maximum (peak) rate of oil production, p is the year
of peak production, and ¢ sets the time scale. Small ¢ (in years) means that the whole
process is quite quick. Larger o means that it takes longer time.

(1) The accompanying CD has a file USOil.csv holding production information for
the US oil industry from 1860 to 2007. Each line of the file has a year and a
production volume for that year. The production volume is in 1000’s of barrels.

(2) Create a spreadsheet holding the US oil production data.

(3) Insert a graph showing US oil production over the given time period
(see next page for a sample graph).

We could use a sophisticated mathematical approach to try fitting this data to a bell
curve; but the spreadsheet offers an alternative approach — we can set up a calculation
and choose P, p and o by trial and error.

(4) Set up cells to hold P, p and o values.

(5) Add a column to calculate the bell curve, based on the values in the P, p and ¢
value cells. Hint: To calculate e to the power x in a spreadsheet, write exp(x)

(6) Modify your graph to show both the US oil data and the calculated bell curve
together.

(7) Experiment until you have P, p and ¢ values that give a good match to the oil
data. Note that the match is not exact — the actual oil data only approximately
follows a bell curve.

(Question 1 - continued on next page)

Your graph should look something like this

12000

0000

ot

8000

4000

2000 -

4]
1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

(8) Extend your graph so that you can read off the year in which US oil production will have
dropped to 25% of its peak value. To do this you will have to extend the range of dates for
which you calculate the bell curve and extend the horizontal axis of the graph to show the
new values.

The file NewField.cvs holds data up to 2007 from a little known new oil field opened in 1955.
Although the amount of data is quite small, we can still fit a bell curve to it.

(9) Start a new spreadsheet. Load the NewField.cvs data.
(10) Fit a new bell curve and experiment to predict the year of peak production, and the peak
production quantity of the new oil field.

The US oil production data is taken from http://tonto.eia.doe.gov/dnav/pet/hist/ meripuss
(provided by the US Energy Information Administration)

TURN OVER

G-

Desk Calculator (Careful and Accurate Programming)
Your programming work in this question will be assessed on two criteria:
(a) Completeness and accuracy of the program.

(b) Good presentation. That is, it should make good use of programming language
facilities, be well organised, neatly laid out, and lightly commented.

Your problem is to write an unusual kind of desk calculator. It should take
instructions from the keyboard and display results in a console window. Please read
through the question carefully to make sure that you understand how the calculator
should operate

The calculator works on a list of numbers. Numbers can be entered using the ‘Push’
command or can be left by a calculation. Arithmetic commands can be used to add,
subtract, multiply or divide some of the most recently added numbers in the list. All
commands take the form of a number followed by a letter. The commands are Add,
Subtract, Multiply, Divide, Push and Quit. In the case of the push command, the
number is the value to be put into the list. In the case of the arithmetic commands the
number tells the program how many items to take off the list. Those items then have
the arithmetic operation performed on them, and the (single number) result is put back
onto the list. The commands are illustrated in the following demonstration. Output
from the program is underlined.

Input/Output Explanation

101P Push puts the number 101 into the list

202P Push 202 into the list

303P Push 303 into the list

404P Push 404 into the list

505P Push 505 — at this stage there are 5 numbers in the list

3A Take the last 3 numbers off the list (gets 303, 404,

505),

>> 1212 ... adds them, puts the result on the list and displays it
... leaving the list with (101, 202, and 1212)

3A Add 101, 202 and 1212, push the result onto the list

>> 1515 ... and display it (15195)

303P Push 303. Now the list has two numbers (1515 and

303)

2D Divide the last two numbers on the list (1515 / 303 =

5)

>> 5 ... again displaying the result

101p Push 101

5P Push 5 giving a list with 5, 101 and 5

3M Multiply the three numbers

>> 2525 ... and display the result

5P Push 5

101p Push 101, giving a list with 2525, 5, 101

3D Divide the three numbers on the list

>> 5 ... and display 2525/ 5 / 101 => 5

0Q Quit

In the console window the first few commands look
like this

CONTINUED

_5-

Battleships (Problem Solving and Programming)
Your programming work in this question will be assessed on two criteria:

(a) Your approach to the problem. We will be looking at your work for evidence that you found
good ways of storing the necessary data, and devised algorithms for finding and displaying
the requested results. Please hand in any notes and diagrams that describe what you are
attempting to program, even if you don’t have time to code or complete it.

(b) The extent to which your program works and correctly solves the problem.

In this problem you are asked to work towards building a computer form of the popular
children’s game ‘Battleships’. Building a computer game can involve a great deal of work by
many people. A good game will have high quality graphics, a well designed user interface and
be capable of playing ‘intelligently’ (the so called Al or ‘artificial intelligence’ component of
game development). Your task is to work on Al for the ‘Battleships’ game. You will do this by
building enough of a game program to test its playing strategy — you will not build the entire
game.

A typical set of instructions for the battleships game, taken from a game website, is shown on
the next page. Many aspects of the game can be varied: the size of the grid, number and
types of ships, ways of scoring, etc.

(1) Decide on a way of storing a game grid. Write a program to hold a game grid and
display it on the screen. This DOES NOT need sophisticated graphics. Simply
displaying a grid with text is fine. Here is a sample grid showing an aircraft carrier
starting at B2, and a cruiser at D3:

A AAAA

™ O m g QO Wy
@

123456 78

(2) Extend your program to accept input from the keyboard to allow a user to enter ships
onto the game grid. Allow just two kinds of ship: aircraft carriers (which occupy 5
cells in a horizontal or vertical row) and cruisers (3 cells).

For experiments with strategy (Al) we will play a modified version of the battleships game. A
player has a fixed number of turns (eg: 20). They get a point for every hit on a ship square.
(Remember that to sink a ship we have to hit every square it occupies, so it is possible to get
5 points hitting one aircraft carrier.) The goal is to get as many points as possible. A strategy
is a way of choosing squares to shoot at. It is possible to test a strategy with just one player
shooting. It is not necessary to implement the full game with two players.

(3) Modify your program to test playing strategies, e.g. generate 20 shots and score them.

(4) Write down any ideas you have for playing strategies. Implement and test some or all of
these. Describe your results.

TURN OVER

Instructions for Battleships (from http://www.activitvvillage.co.uk/battleships instructions.htm)

Give each player a pencil and a print-out of the Battleships game. The top grid is for your own

fleet ("My Ships") and the bottom grid is where you try to locate the other player's fleet ("Their

sShips").

First you decide where to place your own fleet within your grid. A fleet is made up of one Aircraft
Carrier, one Battleship, one Cruiser, two Destroyers and two Submarines. Each type of ship
covers a different number of boxes in the grid, as shown on the print-out, and is drawn vertically

or horizontally (not diagonally). Ships cannot
occupy the same square.

To place a ship, check how many boxes are covered
by the ship (shown to the left of your grid) and
then write the first letter of the name of the ship in
the boxes it covers. For example, a Cruiser covers
three boxes so you would pick any three adjacent
boxes and put the letter C in each box. Keep your
fleet location secret from your opponent! When
each player has marked their fleet on their grid,
begin play.

Take turns to “shoot” at your opponents’ fleet by
calling out the number of a certain box by its grid
location. For example, you could call out "B4" or
"D1". Your opponent must say whether the shot is
a "miss" or a "hit", and, if it is a "hit", what type of
ship it is. You can keep track of what you have
shot on your lower grid, and the ships you have
sunk by crossing off the ships at the bottom right
of your print-out. To sink a ship you must shoot
all of the squares it occupies.

Play continues until one player wins by
successfully sinking the whole of the other player's
fleet.

Battleships!
My Ships

o

[

TIO|MMOIO|m| >

112/3]|4|5167

Their Ships

Aircraft Carrier A
Battleship EEE

r
Y g

‘@(@-@@ Cruiser | C
Destroyers @Ib_:

Submatines | S

w

o]

«]

#

T MmO iO[m>

Aireraft Carrier | A A

Battleship EEB

i
S I
‘@@@@ Cruiser |
Destroyers @E | D

.
Submarines | S
(=l

&

