2011 SCHOLARSHIP EXAMINATION

PRACTICAL SECTION

DEPARTMENT
COURSE TITLE

TIME ALLOWED

NUMBER OF QUESTIONS
IN PAPER

NUMBER OF QUESTIONS
TO BE ANSWERED

GENERAL INSTRUCTIONS

SPECIAL INSTRUCTIONS

CALCULATORS PERMITTED

University
of Waikato

Te Whare Winanga
o Waikato

Computer Science
Year 13 Scholarship

Six hours with a break for lunch at the discretion of the
supervisor

Three
Three

Candidates are to answer ALL THREE questions. All
questions are important. Answer as much of each
question as you can. Plan your time to allow a good
attempt at each question, but be aware that Question 3
is the most difficult and will take considerably longer
than the others.

Please hand in listings, notes and answers to written
questions, and a CD/DVD with your program/computer
work for each question. Please make sure that a copy of
each program is printed, or stored as a plain text file.
You cannot assume that the examiner has available any
special software that might be required to read your
files.

Candidates may use any text or manual for reference
during the examination.

Yes

TURN OVER

Ladder Tournament? (Spreadsheet Use)

In this question you are asked to use a spreadsheet to do calculations and to display the
results. We expect that the spreadsheet will be used for all calculations unless the
question states otherwise - you will be marked down for performing calculations by hand
and directly entering the results. Your work will be marked on three criteria.

(i) The accuracy of your results.
(i) The skill you show in making use of the capabilities of the spreadsheet.

(it} The presentation of your results. We have deliberately not provided any instructions
concerning layout or formatting and example graphs may lack labels and proper
scales.

A ‘Tournament’ is a pattern of games designed to rank players or teams. The simplest
is a knockout tournament where players or teams are randomly paired for a first round
of matches, and the winners of those matches go on to a second round, etc. This
continues until one winner emerges. Knockout tournaments are suited to special
sporting events.

A Ladder Tournament’ is a system that can be used for an ongoing set of games over a
long period of time. It is often used by sports clubs to rank their members. The idea is
that all the players are listed in a column on a notice board. At any time a lower
ranked player can challenge a higher ranked player to a match. If the lower ranked
player wins, their position on the list is swapped with that of the person they defeated.
Over a long period of time the list should end up with the best player at the top, the
worst at the bottom and everyone else sorted appropriately in between.

For example, consider the ladder on the left below. Helga is on the top. If Aline
challenges Helga and wins they swap places as shown on the right. Note that the new
ranking may not be exactly right. It might be that Helga is a better player than
Leeanne, but she will have to challenge Leeanne to prove it.

Aline Ascencio
Leeanne Lum
Helga Hambright
Zora Zinck

Helga Hambright
Leeanne Lum
Aline Ascencio
Zora Zinck

S wn =
AW

One problem with a simple ladder is that it shows no history. Your task is to develop a
spreadsheet that maintains a Ladder Tournament. You have been provided with two
files. The first (names.txt) is a list of names in order from the top of the ladder (best
player) to the bottom. The names are in the order chosen at the time the ladder was
first started. There are 20 names in the list. For simplicity we have just included each
person’s first name. The first few lines look like this:

Adrianna
Nichol
Mozella

(Question 1 - continued on next page)

The second file (matches.csv) has one line for each match played so far. Each line has
the name of the defender, the name of the challenger and the outcome (“win” if the
challenger won, “loss” if they lost). The items on each line are separated by commas —
hence the file being a .csv or comma separated value file. The first few lines look like

this.

Rhona,Cristopher,win
Nichol,Wilburn,win
Haywood, Reyes, win

Step One: Make a spreadsheet. The sample below suggests a layout you might use.
Across the top are the matches played, showing challenger, defender and result. Below

are columns with the initial ladder and then, under each match, the new ladder
resulting from the match (with one pair of names swapped if there has been a win).

Defender Rhona Nichol Haywood Adrianna
Challenger Cristopher Wilburn Reyes Haywood
Result win win win wein

i Adriannas Adrianna Adrianna Adrianna Haywood
2 Nichol Nichol Wilbuen Wilburn Witburn

3 Mozella Mozella Mozella Mozella Mozella

4 Mariko Mariko Mariko Mariko Mariko

5 Wilburn Wilburn Nichol Nichol Nichol

6 Edna Edna Edna Edna Edna

7 Haywood Haywood Haywood Reyes Reyes

8 jamila Jamila Jamila Jamila jamila

9 May May May May May

10 Uindsey Lindsey indsey lindsey Lindsey
i1 Aimee Almee Aimee Aimee Aimee

12 Rhona Cristopher Cristopher Cristopher Cristopher
33 Cristopher Rhona Rhostsa Rhona Rhony

i4 Noring Norine Norine Norine Norine
is5 Thomasens Thomasena Thomasena Thomasena Thomasena
16 Reyas Reyes Reyes Haywood Adrianna
17 Zora Zora Zota Zora lora

18 aline Adine Aline Aline Aline

19 Leeanne Lesanne Leeanne Leeanne Lesanne
20 Helga Helga Helga Helga Helga

At the right will be the current ladder. Note that this will be a very wide spreadsheet;

only the first few columns are shown

(Question 1 - continued on next page)
TURN OVER

Step Two: Find some way of drawing a graph of place on the ladder for a particular
person. The screen shot below shows a cell with the name of a player (top left), and a
graph showing the player’s place on the ladder over time. In this version the Y axis
shows position on the ladder (1 to 20). No effort has been made to format this chart
well — for example it is upside down (as Helga’s position on the ladder improves, the line

falls).

Helga

P
[Plothres} _—
i, T ——

A0

80 80 100

120 -

CONTINUED

Dates and Weights (Careful and Accurate Programming)
Your programming work in this question will be assessed on two criteria.
(a) Completeness and accuracy of the program.

(b) Good presentation. That is, it should make good use of programming language
facilities, be well organised, neatly laid out, and lightly commented.

Your program should be coded using an agreed programming language. Producing a
solution using a spreadsheet or similar tool is not acceptable

The weight of a human baby at birth varies over quite a wide range. A researcher is

studying birth weights. Their first task is to explore the available statistics. You have
been asked to write a program to help. The available data provides the birth weight in
grams and the birth week (number of weeks since conception) for a number of babies.

Some babies are just naturally large or small. However, one reason for low birth weight
is premature birth. Babies born early are smaller. Our researcher is only interested in
babies born close to their due dates, in particular born in the 37t, 38t or 39t week
after conception.

* Your program should read the birth week and weight for a number of babies.

e It should calculate and display the average weight of those born in weeks 37, 38 and 39;
ignoring those born outside that time.

¢ |t should display the weights of all babies born in the specified weeks whose weight was
less than 2600 grams.

¢ It should display the weights of all babies born in the specified weeks whose weight was
greater than 3800 grams.

For example, given the data for 10 babies shown in the Birth Week | Weight(gramsj
table to the right:

Your program should produce output that looks
something like this:

Number of weights averaged = 7
Average weight = 3352
Small baby weights: 2149

Large baby weights: 3893 3897

TURN OVER

Connect Four (Problem Solving and Programming)
Your programming work in this question will be assessed on two criteria:

a) Your approach to the problem. We will be looking at your work for evidence that you
Jound good ways of storing the necessary data, and devised algorithms for finding and
displaying the requested results. Please hand in any notes and diagrams which
describe what you are attempting to program, even if you don’t have time to
code or complete it.

b) The extent to which your program works and correctly solves the problem.

“Connect Four (also known as Captain's Mistress, Four Up, Plot Four, Find Four, Four
in a Row, and Four in a Line) is a two-player game in which the players first choose a
color and then take turns dropping their colored discs from the top into a seven-
column, six-row vertically-suspended grid. The pieces fall straight down, occupying the
next available space within the column. The object of the game is to connect four of
one's own discs of the same color next to each other vertically, horizontally, or
diagonally before one's opponent can do so. There are many variations on the board
size, the most commonly used being 7x6, followed by 8x7, 9x7, and 10x7.

The game was first sold under the famous Connect Four trademark by Milton Bradley
in February 1974. Their game looks like this:” (Text and image from Wikipedia.)

Your task is to write a program to read and display the state of a Connect Four game in
text format, to decide if the game has been won or not, and if not to decide whether the
game is close to a win condition.

You should develop your program in stages as outlined below.

(Question 3 — continued on next page)

Stage 1: The first step is to be able to read the state of a game into memory, ready for
display or analysis. You can assume that the game has 6 rows and 7 columns, that
counters are yellow and red, and that red plays first. One way of handling input is to
read a line with the numbers of the columns used on each play. For example the input

765642543635354462334

means that red played in column 7 (columns numbered from the left as 1 to 7), then
yellow played in column 6, then red in 5, and so on. The input above should generate
this game state (example from Wikipedia).

move, thers g uo Wioning moves hal velow
2y inresponse: ot the top and on the far

Stage 2: Write instructions to display the game state in a text form: For the game state
example above, your display could look like this:

I

I
oo™ ™ o< D
o< o< <
ZS ISR
oo ™

1 |

- Y R

Stage 3: Write instructions to examine the game state you have read and determine
whether or not the game has been won. Your program should output a message saying
if red has won or yellow has won or if neither has yet won. The requirement for a win is
four counters of the same colour in a line horizontally, vertically or diagonally. You
may assume that only one player has a line of four in a game state.

Stage 4: Write instructions to examine a game state (where the game has not yet been
won) and decide if the player to play next can prevent their opponent from winning on
the following turn. For example, in the game shown above, red is next to play.
Whatever red plays, it is possible for yellow to win on the following turn.

Stage 5: Can you extend your solution to stage 4 to decide if a win can be guaranteed
after each player has two more turns?

