

TURN OVER

2014 SCHOLARSHIP EXAMINATION

PRACTICAL SECTION

DEPARTMENT Computer Science

COURSE TITLE Year 13 Scholarship

TIME ALLOWED Six hours with a break for lunch at the discretion of the

supervisor

NUMBER OF QUESTIONS Three
IN PAPER

NUMBER OF QUESTIONS Three
TO BE ANSWERED

GENERAL INSTRUCTIONS Candidates are to answer ALL THREE questions. All

questions are important. Answer as much of each question
as you can. Plan your time to allow a good attempt at each
question, but be aware that Question 3 is the most difficult
and may take considerably longer than the others.

SPECIAL INSTRUCTIONS Please hand in listings, notes and answers to written

questions, and a CD/DVD with your program/computer
work for each question. Please make sure that a copy of
each program is printed, or stored as a plain text file. You
cannot assume that the examiner has available any special
software that might be required to read your files.

 Candidates may use any text or manual for reference during
the examination.

CALCULATORS PERMITTED Yes

-2-

(Question 1 – continued on next page)

1. On The Spot? (Spreadsheet Use)
 In this question you are asked to use a spreadsheet to do calculations and to display the

results. We expect that the spreadsheet will be used for all calculations unless the question
states otherwise - you will be marked down for performing calculations by hand and directly
entering the results. Your work will be graded on three criteria.

(i) The accuracy of your results.

(ii) The skill you show in making use of the capabilities of the spreadsheet.

(iii) The presentation of your results. We have deliberately not provided any instructions

concerning layout or formatting and example graphs may lack labels and proper scales.

While we often think of spreadsheets as tools for financial analysis, they are actually used
for many other purposes. In particular, scientists and engineers often use spreadsheets for
exploring and analyzing their data. In this question you will be given some data from an
experiment and be asked to ‘explore’ it – find ways of transforming and presenting the data
to allow better understanding.

We were experimenting with the possibility of using cellphones to track the leg motion of a
person in a virtual reality environment – the idea being that they might walk ‘on the spot’
and that the system might interpret this as proper movement in a virtual environment. For
this experiment Rachel has cellphones strapped to the sides of each ankle. She is standing
in the centre of an octagonal wooden trough with quite steep sides (approx. 45 degrees). If
she takes a step in any direction her foot moves up and in the intended direction, then goes
down to touch the trough side and slides back down to the centre of the trough. This is a
little different from walking on the spot. She can actually move her foot forward, backward
or to the side, but will always end up standing in the middle of the trough.

The cellphones record accelerometer data approximately 100 times per second. You have
been supplied with a record of a little over 14 seconds of data from Rachel’s right leg. Each
row of your data holds one observation with four numbers. The first is the time in

-3-

(Question 1 – continued on next page)
TURN OVER

milliseconds (1/1000th sec). The other three are the acceleration
in X, Y, and Z directions respectively. Here are the first four rows.

10.00839758,0.09935937,8.844181,3.5984852
20.01679515,0.10175357,8.826224,3.6367924
30.02519273,0.044292733,8.7951,3.6032736
40.03359031,0.033518825,8.780735,3.7217865

The orientation of the axes of the cellphone is approximately as
shown in the picture on the right.

The accelerometer measures acceleration from movement, and
also acceleration due to gravity. The acceleration due to gravity is
approximately 9.8 (metres/sec2) mostly in the Y direction.

Step One.

A file called ‘rightleg.csv’ will be supplied to you. Read the data
from this file into a spreadsheet.

Step Two.

Make charts showing acceleration against time. The picture below shows acceleration in the
Y dimension. The time axis is in milliseconds (thousandths of a second). Note that the
acceleration varies above and below an average value of around 9.8. Note also that the first
and last short segments of the graph have lower acceleration. This is because Rachel raised
and tilted her ankle to reach the phone for turning on and turning off.

 ‐5

0

5

10

15

20

25

0 20000 40000 60000 80000 100000 120000 140000 160000

Y

Y

-4-

CONTINUED

Step Three

Your task is to try to make sense of the data. Can you find a way of displaying the data so
that each step taken by Rachel is clear? Can you decide in which direction she moved her
foot at each step? If this data were being used to control movement in a game, how could
you detect a step and decide on its direction?

Some ideas to think about:

Rachel was stepping at an ordinary rate. How long does it take you to make a step? There
is a time scale.

Zooming in on part of the data makes it easier to see detail (ie: look at short time periods).

 You can integrate acceleration to get speed. If you start with a speed of zero, then in each
time interval add the length of the time interval multiplied by the acceleration in that
interval, you will obtain approximate speed. Unfortunately you will find that the speeds
you get are very large because acceleration values include gravity. Can you find a way of
removing gravity from the Y acceleration?

To hand in, write brief notes on your spreadsheet and print out illustrative screen shots to
help with the explanation. You can write this on paper, or use a text editor, or a word
processor.

-5-

TURN OVER

2. Numbers in Words (Careful and Accurate Programming)

Your programming work in this question will be assessed on two criteria:

(a) Completeness and accuracy of the program.

(b) Good presentation. That is, it should make good use of programming language facilities,

be well organised, neatly laid out, and lightly commented.

When writing a cheque, the normal practice is to put the amount of money both in digits
and in words. When cheques are generated by computer, the software has to be able to do
the conversion from numeric amount to words. For example:

 Your task is to write a program that generates the English word form for an amount of
money in the range $0.00 to $99.99. There are design details to consider in this program.
For example: should you convert $1.00 to “one dollar” or to “one dollar and zero cents”.
Rather than write down all the rules we have provided a range of examples. Your
program’s output should match that in the sample interaction below. (Underlined text is
typed by the user of the program.)

 Sample program Interaction

Enter an amount: 1.00
one dollar and zero cents
Enter an amount: 1
one dollar and zero cents
Enter an amount: 1.1
one dollar and ten cents
Enter an amount: 1.01
one dollar and one cent
Enter an amount: 1.99
one dollar and ninety nine cents
Enter an amount: 99
ninety nine dollars and zero cents
Enter an amount: 0.99
zero dollars and ninety nine cents

-6-

(Question 3 – continued on next page)

3. Making Tracks (Problem Solving and Programming)

 Your programming work in this question will be assessed on two criteria:

 (a) Your approach to the problem. We will be looking at your work for evidence that you

found good ways of storing the necessary data, and devised algorithms for finding and
displaying the requested results. Please hand in any notes and diagrams which
describe what you are attempting to program, even if you don’t have time to
code or complete it.

 (b) The extent to which your program works and correctly solves the problem.

You may find that the programming language you use makes it difficult to work as shown in
the example implementations below. If this is the case, feel free to build your program in a
way that suits your circumstances.

Given the current craze for fitness gadgets that measure your movement and exertion
levels, it is hardly surprising that people are trying to invent games in the same domain.
Your task in this problem is to assist the inventor of a new game called ‘Making Tracks’ to
implement an experimental version of the game, and to offer some advice on the
appearance and rules of the game.

The concept of the game is of two players walking over a hilly terrain. Their fitness
restricts them to paths that are not too steep (either going up or down). Their goals are to
move from a starting point to a finishing point, getting as much exercise as possible.
Exercise is measured by distance travelled, with uphill travel giving higher exercise rates
than downhill or level travel. The player who gets the most exercise will win.

The actual game is played on a rectangular board, divided into squares. There are two
players: A and B. A starts at the top left corner of the board and must finish at the bottom
right. B works in the opposite direction – from bottom right to top left. At the start of play,
the board size (number of rows and number of columns) is decided. Each square of the
board is given a height (an integer in the range 0 to 5 inclusive). A physical version of a 5
by 5 square board might look something like this.

You have been asked to make a text version of the game, displaying the board on the
console, and allowing players to enter moves on the keyboard.

-7-

Question 3- continued on next page
TURN OVER

The starting game state with a 5(row) by 8(column) board might look like as follows. Note
that A and B are at their starting squares.

Here is a possible board state after each player has made 11 moves, showing the paths
followed by each player.

-8-

 The rules are as follows:

 Players take turns to move (except at the end, where one player may continue to move

after the other has finished).

At each turn a player may move to an adjacent square (left/right/up/down on the
board). Diagonal moves are not permitted. A player may not move off an edge of the
board.

A player may only move to a square that has the same height, or whose height differs
by no more than one from the height of the player’s current square.

A player may not visit any square on the board more than once.

A player may be on the same square as the other player the same time, or may visit
squares previously occupied by the other player.

A player scores one point for each move, and an additional point if the move is ‘uphill’
(from a square of height h to a square of height h+1).

A player loses immediately if they have not reached their finishing square and cannot
make a legal move.

The game finishes either when a player has lost, or when both players reach their
finish squares. One player may take more moves than the other to reach their finish.

We suggest that you develop your program in the following stages. There is a great deal of
programming to be done. Do as much as you can.

Stage 1: Read a game layout (board size and square heights). Details of how you

specify the information are up to you.

Stage 2: Display a board with heights for each square.

Stage 3: Allow the user to enter a move. You can choose how a move should be

entered.

Stage 4: Check that the move is legal. If not, tell the user why not.

Stage 5: Perform the move and display the updated board, showing the path

followed by each player.

Stage 6. Calculate and display a score for each player.

Stage 7. Check for the losing condition.

Stage 8. Announce a winner when both players reach their finish squares.

If you get all that done, then there are two further challenges.

Stage 9. The suggested text layout makes it difficult for players to plan routes,
because it is hard to tell which moves are legal (height differences of no
more than one). Suggest and implement an improved display which makes
it easier to plan routes.

Stage 10. Suggest and implement one change to game play, which in your view would
make the game more interesting to play. (This stage requires a brief
written explanation of your idea.)

